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OVERVIEW
Timeline

 Facility established: 1976
 End: Open – this is an on-going 

activity to test/validate/document 
battery technology as technologies 
change and mature

Budget
 DOE Funding FY16: $1.8 M
 FY15: $2.0 M
 FY14: $2.3 M

Barriers
 Performance (power and energy 

densities)
 Cycle life (1,000-300,000 

depending on application)
 Calendar life (15 y)
 Low-temperature performance

Collaborations
 US battery developers
 Idaho National Laboratory, Sandia 

National Laboratories
 CATARC (China)
 Purdue Univ., Battery Innovation 

Center
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RELEVANCE
Objective
 To provide DOE and the USABC an independent assessment of contract 

deliverables and to benchmark battery technology not developed under 
DOE/USABC funding
 To provide DOE and the USABC a validation of test methods/protocols
 To develop methods to project battery life and to use these methods on test 

data
Approach
 Apply standard, USABC testing methods in a systematic way to characterize 

battery-development contract and benchmarking deliverables
 Characterize cells, modules and packs in terms of:

– Initial performance
– Low temperature performance/Cold cranking
– Cycle life
– Calendar life

 Compare test results to DOE/USABC goals
 Adapt the test facility hardware and software 

– to accommodate programmatic need
– to accommodate the unique needs of a given technology and/or deliverable
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PROGRAM MILESTONES

Milestone Date Status
Submit quarterly
reports to DOE 
and USABC

12/31/15 Complete

Submit quarterly
reports to DOE 
and USABC

3/31/16 Complete

Submit quarterly
reports to DOE 
and USABC

6/30/16 On track

Submit quarterly
reports to DOE 
and USABC

9/30/16
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TECHNICAL ACCOMPLISHMENTS:
PROGRESS AND RESULTS – TESTING 
CONTRACT DELIVERABLES

 Test deliverables are mostly cell-oriented and include developments in

 Deliverables are characterized in terms of initial capacity, resistance, energy 
and power.  They are then evaluated in terms of cycle and calendar life for the 
given application

 Results are used to show progress toward meeting DOE/USABC initial 
commercialization goals

– Lithium metal anodes
– Separators
– Advanced cell chemistries (beyond 

Li-ion)

– Lithium-ion battery chemistry 
(graphite anodes)

– Silicon anodes
– Battery recycling
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PROGRESS AND RESULTS – TESTING 
CONTRACT DELIVERABLES

 Test deliverables 
come from many 
developers

Developer Sponsor Level Quantity Rated capacity, Ah Application Status
USABC Cell 9 27 PHEV-20 on-going
DOE FOA Cell 18 15 PHEV-20 on-going
DOE FOA Cell 4 15 PHEV-20 on-going
DOE FOA Cell 23 3 PHEV-20 on-going
DOE ARRA Cell 18 6.8 HEV complete
USABC Cell 30 2.2 12-V S/S on-going
USABC Cell 20 20 12-V S/S complete
USABC Pack 3 40 12-V S/S complete
USABC Cell 6 0.357 12-V S/S on-going
USABC Module 15 40 12-V S/S on-going
USABC Cell 15 0.357 12V S/S on-going
USABC Cell 6 0.79 EV on-going
DOE Cell 10 4.3 on-going

Xerion USABC Cell 21 0.92 PHEV-20 on-going

Optodot DOE FOA Cell 9 2.1 EV complete

DOE FOA Cell 18 1.7 EV complete
DOE FOA Cell 6 2.7 EV complete
DOE FOA Cell 15 2.7 EV complete
2013 ABR Cell 10 2.1 EV complete
2013 ABR Cell 12 2.88 EV on-going

Cell 24 14 EV on-going
Cell 13 2+4 EV complete

Tiax 2013 ABR Cell 13 1.8 EV on-going

ANL (J. Zhang) DOE Cell 15 0.16 EV/PHEV on-going

DOE Cell 4 11 EV on-going
DOE Cell 2 2.2 EV complete
USABC Module 3 11 EV complete

LG Chem DOE Cell 10 25.9 PHEV-40 on-going
XALT USABC Cell 24 95 EV on-going
Wildcat DOE Cell 20 1.7 EV on-going

DOE FOA

Seeo

JCI

Leyden

Maxwell

24-M

3M

Navitas
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PROGRESS AND RESULTS – COLLABORATIVE 
US/CHINA PROTOCOL COMPARISON
 Battery testing is a time-consuming and costly process
 There are parallel testing efforts, such as those in the US and China
 These efforts may be better leveraged through international collaboration
 The collaboration may establish standardized, accelerated testing 

procedures and will allow battery testing organizations to cooperate in the 
analysis of the resulting data  

 In turn, the collaboration may accelerate electric vehicle development and 
deployment

 There are three steps in the collaborative effort
Step Status

Collect and discuss battery test protocols 
from various organizations/countries

Complete

Conduct side-by-side tests using all 
protocols for a given application, such as 
an EV

Complete 

Compare the results, noting similarities 
and differences between protocols and 
test sites

Complete; open-literature paper published
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CONDUCT SIDE-BY-SIDE EXPERIMENTS
 A test plan based on an EV application was written and agreed to 
 Commercially-available batteries based on LiFePO4 and carbon were procured.  

The batteries were distributed to ANL, INL* and CATARC (China)
 Initial similarities and differences

• The US cycle-life aging protocol consists of a dynamic, constant-power 
profile and constant-current charging

• The Chinese cycle-life aging protocol consists of constant-current 
discharges and charges

• USABC Reference Performance Test consists of 2 capacity cycles, peak 
power pulse test at 10% DOD increments and full DST cycle.  The cells are 
characterized using these performance tests every 50 cycles

• China Reference Performance Test consists of 1 capacity cycle and 10 
second discharge pulse at 50% DOD. The performance of the cells were 
characterized using these performance tests every 25 cycles

• Both cycle-life protocols terminate discharge at 80% DOD
*Jon Christophersen, Taylor Bennet
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COMPARING THE PROTOCOLS SHOWS…
USABC China

DOD (Energy) Window 0-80% DOD 0-80% DOD
Temperature 25 °C 25 °C
Capacity measurement rate C/3 C/3
End of Test criteria 80% degradation 80% degradation
Cycle Type Dynamic, Power based Constant-current

Power Capability Measurement
Peak Power Pulse 
Estimation at 80% DOD

Pulse Power Density 
at 50% DOD

Pulse duration 30 seconds 10 seconds
Pulse Current 75A 225A
RPT Frequency 50 cycles (10.5 days) 24 cycles (6 days)
RMS power of cycle 50-51 W 12-13 W
RMS current of cycle 15-16 A 3.5-4 A
Average Voltage of cycle 3.17V fading over time 3.27V without fading
Energy throughput of cycle 27 Wh 19.5 Wh
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DISTRIBUTION OF CELLS AND INITIAL 
CHARACTERIZATION

 Since the QC/T method uses resistance at 50% DOD (10 s) as a metric, 
resistance from the USABC method was calculated at 50% DOD (10 s), 50% 
DOD (30 s), 80% DOD (10 s) and 80% DOD (30 s) to facilitate comparison

 Differences in pulse width and magnitude affected results
– Degree of electrode polarization and mass/charge transfer effects

Protocol Parameter
Average 

value (s.d.)
USABC C/3 capacity, Ah 7.46 (0.09)

Resistance at 50% DOD (10 s), mΩ
Resistance at 50% DOD (30 s), mΩ
Resistance at 80% DOD (10 s), mΩ
Resistance at 80% DOD (30 s), mΩ

3.97 (0.04)
4.71 (0.04)
5.41 (0.10)
7.45 (0.12)

QC/T 743 (no pulse) C/3 capacity, Ah 7.74 (0.06)
QC/T 743
(pulse)

C/3 capacity, Ah 7.62 (0.12)
Resistance at 50% DOD (10 s), mΩ 3.46 (0.03)

Average performance parameters measured by using two protocols.
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CAPACITY FADED WITH CYCLING

 Average loss in cell capacity appeared to be linear with time and increased at the 
same approximate rate, within experimental error (±2σ)
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CELL RESISTANCE: %DOD AND PULSE WIDTH

 Using data from USABC protocol, as expected, the 10-s values were lower than 
the 30-s ones
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CELL RESISTANCE INCREASED WITH CYCLING

 %DOD and pulse-width affect apparent mechanism of resistance increase
– 50% DOD, 10- and 30-s: resistance increase follows a∙t rate law
– 80% DOD, 10- and 30-s: resistance increase follows a∙t + b∙t½ rate law
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APPARENT RESISTANCE INCREASE
MECHANISM IMPACTS ESTIMATED LIFE

 30% increase in resistance was used as end-of-life metric

 There was a large difference in estimated life using usual %DOD and pulse 
widths between the USABC and the QC/T 743 protocols
 With the right combination of tests and metric points, the two protocols produce 

similar results
 The results described here provide a starting point for a discussion between the 

two groups

Protocol and metric 
parameters

Estimated life, days

USABC (50% DOD, 10 s) 536.67
USABC (50% DOD, 30 s) 372.21
USABC (80% DOD, 10 s) 178.50

USABC (80% DOD, 30 s) 168
QC/T 743 (pulse) 510

14



PROGRESS -- PROTOCOL VALIDATION/EFFECT 
OF FAST CHARGE

 With further vehicle electrification, customers would desire battery charging to 
take the same amount of time as refueling an ICE does at a service station.  This 
does not have to be a full charge

 The Fast Charge Test in the USABC EV Manual2 determines the impact of 
charging a battery from 40 to 80% SOC at successively faster rates, starting 
from about twice the overnight rate.  Since the manual was written for Ni/MH 
technology, the ideas were adapted for the higher-performing, lithium-ion cells

 Commercial, 18650-sized lithium-ion cells, consisting of NMC-based chemistry, 
were chosen

2Electric Vehicles Battery Test Procedures Manual, Rev. 2, January 1996.
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COMPARE FAST-CHARGE AND CONSTANT-
CURRENT PROFILES
 Two tests

– Fast-charge (FC) and constant-current (CC)
– RPTs (C/1 capacity and EV Peak Power Test) every 100 cycles

– The segments represent (a) C/3 charge to 100% SOC; (b) 30-min rest; (c) 
C/3 discharge to 40% SOC; (d) fast charge to 80% SOC; and (e) C/3 
discharge to 0% SOC. The fast-charge step shown in this particular profile 
used twice the simulated overnight rate, 2C/3.16



CELL RESISTANCE CHANGED DURING THE 
TESTS
 Since time base is ambiguous, how should the resistance data be presented?

– Total cycle time or cumulative charge time

 CC data appears to show faster resistance increase
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CELL RESISTANCE CHANGED DURING THE 
TESTS (CONTINUED)

 Here, FC results appear to increase faster than CC, the direct opposite of the 
previous plot
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PLOTTING ∆R VS. RN-1 REMOVES AMBIGUITY

 From the slopes of lines, fast-charging causes resistance to rise faster
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…WHICH IS CONSISTENT WITH POST-TEST 
RESULTS

 More delamination seen on the anodes of FC cells
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SUMMARY AND FUTURE WORK
 Summary

– Hardware deliverables from many sources have been tested at Argonne and 
continue to be evaluated for a variety of vehicle applications

– This testing directly supports DOE and USABC battery development efforts
– The US/China Protocol Comparison has shown

o There are similarities and differences in the test protocols
o With similar metric points, the results are comparable

– The results of the fast charge test have shown that cell heating at high charge 
rates is the main cause of resistance increase.  This result may have practical 
implications

 Future Work
– Continue to support the DOE and USABC battery development efforts by 

performing unbiased evaluations of contract deliverables, using standardized 
test protocols

– Start the next experiment with the Chinese on fast-charging LiFePO4-based 
cells

The work at Argonne National Laboratory was performed under the auspices of the U.S Department of Energy (DOE), 
Office of Vehicle Technologies, under Contract No. DE-AC02-06CH11357.  The program manager was Brian Cunningham.
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